Saa käyttää omaa ohjelmoitavaa laskinta tentissä

a) Itseispuolijohteeella elektronien ja aukkojen liikkuvuus kasvaa lämpötilan funktiona.

b) Valmistettaessa elektrolyysillä puhdasta metallia raakametalli asetetaan katodiksi ja puhtasta metallista valmistettu ohut levy anodiksi.

c) Schottky-diodin toiminta perustuu metalli-puolijohde rajapinnan tasaantumavaan vaikutukseen.

d) Kiteissä, esim. oskillaattoriosovelluksissa, käytetään hyväksi kvartsikiteen ferroelektristä ilmiötä.

e) Sähköisen dipolin muodostavat kaksi yhtä suurta ja samanmerkkistä varausta pienet etäisyyden päässä toisistaan.

f) Suprajohtavassa tilassa suprajohto käyttäytyy ulkoisessa magneettikentässä kuten voimakas diamagneettinen aine.

2. a) Selvitä lyhyesti sähköistä johtavuutta energiavyömillä mukaan metallille, puolijohteele ja eristeelle. (3p)

b) Mistä tekijöistä Matthiessenin säännön mukaan metallin ominaisresistiivisyyssä koostuu? Miten metallin ja metalliseosten ominaisresistiivisyyys käyttäytyy lämpötilan suhteen? (3p)

3. a) Selvitä eristerakenteen sähkölujuus (termien merkitys). (3p)

b) Mitä tarkoitetaan ferroelektrisellä ilmiöllä ja miten ko. ilmiön selitetään syntyvän bariumtitanaatilla. (3p)

4. a) Selvitä lyhyesti makroskooppiestä tarkasteltuna ferromagneettisen materiaalin magnetoitumismekanismit ulkoisessa magneettikentässä. (3p)
b) Selvitä kolme mahdollisutetta muovin sähkönjohtavuuden aikaansaamiseksi ja mitä tarkoittaa ns. perkolaatiokynnyksellä. (3p)

5. a) Selvitä puolijohdemateriaalilla havaittava Hall-ilmiö. (3p)

b) Laske kahden sylinterielektroدين (sisäside 5 cm ja ulkosäde 16 cm) välissä olevan johteen resistanssi (säteittäissuunnassa), kun johdemateriaalin johtavuus on 0.5×10^{7} S/m ja johteen pituus on 125 cm. (3p)