OSA 1 TEORIA Vastaa lyhyesti seuraavista 20:stä kysymyksestä kahdeksaantoista.

1. Miksi BCS-theoria ei aukottamasti selitä suprajohtavuutta HTS-materiaaleissa?
2. Mitä tarkoitetaan käsitteellä pinning-keskus ja vuon ryömintä ja miten ne kytkeytyvät toisiinsa?
3. Miksi potentssilaki toimii suprajohteen virta-jännite-riippuvuuden mallintamisessa?
4. Mitä tarkoitetaan käsitteellä persistointi ja miksi tämä on vaikeasti toteutettavissa HTS-magneeteilla?
5. Kuvaile Bi-2223 ja Bi-2212 suprajohtimien rakennetta ja valmistustekniikkaa. Miksi hieman korkeamman magneettikentän energiasovelluksissa kyseisten johtimien toimintalämpötila lasketaan tyyppillisesti 20-30 K-asteeseen?
6. Mikä on keskeisin syy sille, että nestetyppijäähdytetty HTS-magneetit ovat huomattavasti stabillimpia kuin nesteheliumjäähdytetty LTS-magneetit?
7. Mitä HTS-johtimien toiminnan näkökulmasta tarkoitetaan materiaalin anisotrooppisuudella?
8. Mitkä ovat suprajohteen matriisimetallin kolme keskeisintä tehtävää?
10. Miksi LTS-magneetissa syntynytta normaali-aluetta voidaan geometrisesti mallintaa ellipsoidilla?
11. Mitä ns. Wiedemann-Franzsin -laki tarkoittaa?
12. Mitä ymmärretään ns. RRR-arvolla? Mikäli suprajohteen kytkenhävöitä halutaan minimoida, onko silloin pieni vai suuri RRR-arvo parempi?
13. Mitkä ovat pääasialliset tavo, joilla lämpöä siirtyy kryostaattia ympäröivästä huoneenlämpötilasta nesteheliumtilaan?
15. Mitä haittatekijöitä syntyy, mikäli suprajohde halutaan valmistaa kryogeenisesti stabiliiksi?
16. Mitä tarkoitetaan suprajohdemagneetin quench-analyysin yhteydessä ns. suojausfunktioon käsitteellä?
17. Mitä suprajohteeessa tarkoitetaan ns. kieristeysputaatuksella?
18. Mitä suprajohteen yhteydessä tarkoitetaan pyörrevirtahävöitä?
19. Mitä tarkoittaa termi quench-back?
20. Millä keinolla quench-tapahtumaa pyritään tyyppillisesti detekteimaan ja miksi se on vaikeaa?

KÄÄNNÄ!
1. Alla on esitetty LTS-suprajohteen poikkileikkaus. Missä sovelluskohteessa kyseinen lan- katyppi on sovelias ja miksi?

A) Vaihtovirtakaapeli
B) Hiukkaskiihdytin
C) Tuulivoimalan generaattori
D) MRI-magneetti

Bonuskysymys:

4. SMES—solenoidimagneetin sisäsuora on 20 cm, ulkosuora 25 cm ja korkeus 10 cm. Käämin inductanssi \(L = 5 \) H. Magneetti siirtyy normaaliltaan virran arvolla \(I = 300 \) A, jolloin käämin virta vaimenee nollaan kahdessa sekunnissa. Kuinka korkeaksi käämin lämpötila noussee, kun energia oletetaan tasan jakautuneeksi koko käämiin ja syntynyt lämmitysteste- ho \(P_{av} \) voidaan approksimoida \(P_{av} = W/\Delta t \), missä \(W \) on magneetin energia quenchin alkapersässä ja \(\Delta t \) virran vaiemenemisaika. Käämityksen ominaislämpö \(C = 1000 \) kJ/m\(^3\)K.

\[Q = C \cdot \frac{\Delta T}{\Delta t} \]

HUOM! Osan yksi kysymys on arvoltaan yksi piste kukin. Osan kaksi kysymyksistä (1-3) voi saada kustakin kaksi pistettä. Bonuskysymys on vapaaehtoinen, josta voi saada kolme lisäpistettä.