FYS-1091 Insinööriyysiikkä I (Petri Kaukasoina)
1. välilukko, 4.3.2016

Kokeessa saa käyttää laskintaa, joka ei ole ohjelmoitava. Kokeeseen saa tuoda korkeintaan 15 kaavaa käsittelevän kaavakokoelman, joka palautetaan omalla nimellä varustettuna välikokeen vastauspaperin välissä.

Putoamiskiihtyvyys 9.80 m/s², gravitaatiovakio 6.67 ⋅ 10^{-11} Nm²/kg², maan säde 6380 km ja massa 5.97 ⋅ 10^{24} kg.

1. Linmun nopeus ajan funktiona on
\[\mathbf{v}(t) = (\alpha - \beta t^2)\mathbf{i} + \gamma t\mathbf{k}, \]
jossa vakioiden arvot ovat \(\alpha = 2.40 \) m/s, \(\beta = 1.60 \) m/s² ja \(\gamma = 4.00 \) m/s². Hetkellä \(t = 0.00 \) s linmun paikka, nopeus ja kiihtyvyys ovat
\[\mathbf{r}_0 = 1.00 \text{ m } \mathbf{i} + 2.00 \text{ m } \mathbf{j} + 3.00 \text{ m } \mathbf{k}, \]
\[\mathbf{v}_0 = 2.40 \text{ m/s } \mathbf{i}, \]
\[\mathbf{a}_0 = 4.00 \text{ m/s}^2 \mathbf{k}. \]
Laske hetkellä \(t = 2.00 \) s linmun a) paikka ja b) kiihtyvyys.

2. Kuvan vuoristoradalla vaunu kulkee rataa pitkin kitkattu. Vauun päästetään liikkeelle levosta pisteessä \(A \) korkeudella \(h = 85.0 \) m silmukan pohjaan verrattuna. Silmukan säde on \(R = 20.0 \) m ja vaunun massa matkustajineen on 455 kg. a) Laske vaunun vauhti pisteessä \(B \). b) Pisteessä \(B \) rata tukee vaunua alaspäin suuntautuvalla normaalivoimalla. Laske kyseisen voiman suuruus.

3. Järven jäällä järjestetystä romurallissa auto \(A \), jonka massa on 1420 kg, kulkee suuntaan 102.0° vauhdilla 12.3 m/s. Toinen auto \(B \), jonka massa on 985 kg, kulkee suuntaan -171.0° vauhdilla 15.2 m/s. Autot törmävät toisiinsa niin, että ne takertuvat toisiinsa. Mi-kä on autojen nopeuden suuruus ja suunta (asteina) törmäyksen jälkeen?

4. Laatikkoa kiskotaan väkipyörän kautta kulkevan narun avulla kulmaan 36.9° kallistettua kitkatonta tasoa pitkin kuvan mukaisesti. Laatikon massa on 5.00 kg. Pyörän säde on 0.200 m ja sen hitausmomentti symmetriaakselin \(O \) suhteen on 0.500 kgm². Naru on liukumaton, venymätön ja massaton. Laske jännitysvoiman suuruus narussa väkipyörän ja laatikon välisellä osalla liikkeen alkana, kun narun vapaasta päästä vedetään voimalla 33.3 N.

5. Kappale (massa 2.34 kg) putoaa levosta kohti maata korkeudelta 35800 km. Laske loppuvauhti kappaleen osuessa maan pintaan korkeudelle 0.00 km. (Ei huomioida ilman vastusta.)