
1. Tarkastellaan matriiseja $A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 5 \\ 0 & 2 & 6 \end{bmatrix}$ ja $B = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 2 & 0 \\ 0 & 3 & 0 \end{bmatrix}$

(a) Laske, jos mahdollista, $2AB$ ja $3BA$. Jos laskeminen ei ole mahdollista, niin perustele miksi.

(b) Laske, jos mahdollista, A^{-1}. Jos laskeminen ei ole mahdollista, niin perustele miksi.

(c) Laske, jos mahdollista, $\det(A)$. Jos laskeminen ei ole mahdollista, niin perustele miksi.

Tarkastellaan 3×3-matriisia A, jolle $\det(A) = 3$.

(a) Onko matriisi A kääntyvä?

(b) Mikä on matriisin A sarakeavaruuden dimensio $\dim(R(A))$?

(c) Kuinka monta ratkaisua matriisiyhtälöllä $Ax = b$ on, kun $b \in \mathbb{R}^3$?

(d) Mitä on $\det(2A) - \det(2A^{-1})$?

(e) Ovatko matriisin A sarakeet linearisesti riippuvia?

(f) Onko $\text{rref}(A) = I$?

3. Olkoot tason kolme pistettä $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$ ja $\begin{bmatrix} 5 \\ 1 \\ -1 \end{bmatrix}$. Mikä on pisteen $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ etäisyys tästä tasosta?

4. (a) Olkoon $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}$. Etsi matriisin A ominaisarvot.

(b) Tarkastellaan matriisia $B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$, jonka eräs ominaisarvo on -1. Etsi ominaisarvoa -1 vastaava ominaisarvovar.

(c) Esitä matriisi C tulona PDP^{-1}, missä D on diagonalimatriisi, kun matriisin C ominaisarvot ovat $\lambda_1 = 1$ ja $\lambda_2 = \lambda_3 = -2$ ja ominaisarvoja vastaavat ominaisarvovarude $E_1 = \text{span} \left(\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right)$ ja $E_2 = \text{span} \left(\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right)$.

1. \[\|v\| = \sqrt{v \cdot v} \]

2. \[\cos(\theta) = \frac{u \cdot v}{\|u\|\|v\|} \]

3. \[u \times v = \begin{vmatrix} e_1 & e_2 & e_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} \]

4. \[\text{proj}_u(v) = \left(\frac{u \cdot v}{u \cdot u} \right) u \]

5. \[n \cdot (x - p) = 0 \]

6. \[x = p + su + tv \]

7. \[(AB)^T = B^T A^T, \quad (AB)^{-1} = B^{-1} A^{-1}, \quad (A^T)^{-1} = (A^{-1})^T \]

8. \[\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \]

9. \[\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij}) \]

10. \[Ax = \lambda x, \quad \det(A - \lambda I) = 0 \]

11. \[V^{-1}AV = D \Leftrightarrow A = VDV^{-1} \]

12. \[A^T A\bar{x} = A^T b \]