MAT-01430 Insinöörimatematikka C 4
Tentti 22.10.2015

Tentaattori: Petteri Laakonen

1. Osoita, että funktio $f(x, y) = -\sin(2x)e^{2y}$ toteuttaa Laplacen yhtälön
 \[
 \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.
 \]

2. Tarkastellaan funktioita $F(x, y) = (e^{xy}, x^2 + y)$ ja $G(x, y) = (x^2, x + y^2, y)$.
 a) Laske funktioiden F derivaattamatriisi pisteessä $(1, 0)$.
 b) Laske funktioiden G derivaattamatriisi pisteessä $(1, 1)$.
 c) Vain toinen yhdistetyistä funktioista $F \circ G$ ja $G \circ F$ voidaan muodostaa. Muodosta se ja laske sen derivaattamatriisi pisteessä $(1, 0)$.

3. Mitkä ovat funktioiden $f(x, y) = x^2 + x - y^2$ pienin ja suurin arvo origokeskessä 2-säteisessä kiekkossa
 \[R = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 4\},\]
 ja missä pisteissä ne saavutetaan?

4. Olkoon $T \subset \mathbb{R}^3$ tetraedri, joka sijaitsee ensimmäisessä koordinaattikahdeksannessa, eli $x, y, z \geq 0$, ja jota rajoittavat tasot $x = 0$, $y = 0$, $z = 0$ ja $x + y + z = 4$. Hahmotele kappale T ja laske sen massa, kun tiheys funktio on $\rho(x, y, z) = k$, missä $k > 0$ on vakio.

Tentin kaavaliite

i. $f(x) \approx f(a) + f'(a)(x - a)$

ii. \[
\begin{align*}
 g(x, y) &= 0 \\
 D_x f(x, y) &= \lambda D_x g(x, y) \\
 D_y f(x, y) &= \lambda D_y g(x, y)
\end{align*}
\]

iii. \[
\begin{align*}
 x &= \rho \sin\phi \cos\theta \\
 y &= \rho \sin\phi \sin\theta \\
 z &= \rho \cos\phi
\end{align*}
\]
 \[dx \, dy \, dz = \rho^2 \sin\phi \, d\phi \, d\rho \, d\theta\]

iv. \[
\begin{align*}
 m &= \iiint_T \rho(x) \, dV, \\
 \bar{x} &= \frac{1}{m} \iiint_T x \rho(x) \, dV, \\
 I_x &= \iiint_T (x^2 + y^2)(x) \, dV
\end{align*}
\]

v. \[
\begin{align*}
 \sin^2 t &= \frac{1 - \cos(2t)}{2}, \\
 \cos^2 t &= \frac{1 + \cos(2t)}{2}
\end{align*}
\]

vi. $(x - p) \cdot n = 0$