1. Tutkittaessa jokien sedimenttipitoisuuksia on havaittu, että pitoisuuden logaritmi noudat- taa hyvinkin tarkasti normaalijakaumaa, tosin eri jakaumaa eri aikoina vuotta. Mitattaessa eräässä joessa tiettyyn aikaan vuodesta sedimenttipitoisuuksien $n = 9$ peräkkäisenä päivänä saatiin logaritmin otoskeskiarvoksi $\tilde{x} = 3.21$ ja logaritmin otosvarianssiksi $s^2 = 1.77$. (Yksikkö tässä on $\ln\text{mg/l}$.)

Etsi sedimenttipitoisuuksen logaritmin odotusarvolle tuohon aikaan vuodesta sekä a) 95% luottamusväli että b) 95% luottamusylärä. $2,11 - \frac{9,23}{4,03}$

(Tästä ei ole mitenkään helppoa saada luottamusväli itse sedimenttipitoisuuksen odotusarvolle, sillä odotusarvon logaritmi ei ole logaritmin odotusarvo. Sedimenttipitoisuuksen jakauma on ns. lognormaali jakauma, jonka välileimointi on hankalaa.)

2. Tuotteen pakkaamisajan käytössä olevalla tavalla A epäillään olevan varianssiltaan turhan suuri (mikä aiheuttaa linjalla odotusaikahukkaa). Ehdotetulla toisella tavalla B pakkaamien on keskimäärin yhtä nopeaa, mutta onko sen varianssi yhtä pienempi?

Asian testaamiseksi mitattiin pakkaamisajat $n_A = 20$ kertaa tavalla A ja $n_B = 25$ kertaa tavalla B ja saatiin otoshajommat, $s_A = 47.98$ s sekä $s_B = 32.02$ s. Mikä on testin tulos ja miksi, jos riskitaso on $\alpha = 0.05$? Pakkaamisaikojen jakaumat oletetaan tässä normaalieik- si.

3. Mitä testataan erilaisilla χ^2-testeillä (kontingenssitauluilla) ja miten?

Testaa nollahypoteesi, jonka mukaisesti bakteerimäärien mediaanit ovat samat sekä antibakteerisille että tavalalliselle saippuoihle riskitasolla 0.05 käyttäen Mann–Whitney-testiä.