Final Exam: Answer every question
2nd Midterm Exam: Answer only questions 3-5

Made by: Arto Perttula
Students can use any calculator or dictionary.
Moreover, each student can have 1 A4 sheet of own notes. There are no restrictions about their style and they are not collected.
Students can do anything they wish with the exam paper.

In addition to text, use figures, tables, equations, and examples in your answers.
In logic diagrams, you can use basic gates (AND, OR...), flip-flops, multiplexers, and common arithmetic components (adder, subtractor, multiplier, comparator...).
Mark the name of every signal and indicate their width clearly.
Preferably write your answers in numerical order (1a, 1b, ... 5).

Please answer in Finnish if possible, eli vastaa suomeksi jos vain osaat.

1. Answer and explain (6p)
 a) Examples of VHDL-language structures that cannot be synthesized (never or sometimes) (2p)
 b) Show basic example (or two) how Mealy state machine can be implemented with VHDL-language (2p)
 c) What is the difference between loop-structures of programming language (like C) and hardware description language (like VHDL)? (2p)

2. Analyze the code in the following page. The clock period is 10 ns. (9p)
 a) What errors or suspicious structures there are in the code? (4p)
 b) Fill in the timing diagram below directly according the code, i.e., without correcting any errors. Present the timing as simulator interprets it. (5p)
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use std.textio.all;

entity tentti_kl4 is
 generic (data_width_g : integer := 8);
 port (clk : in std_logic;
 rst_n : in std_logic;
 ctrl_l : in std_logic;
 val_in : in std_logic_vector (data_width_g-1 downto 0);
 sum_out : out std_logic_vector (data_width_g-1 downto 0);
 d_out : out std_logic;
 eq_out : out std_logic);
end tentti_kl4;

architecture gatelevel of tentti_kl4 is
 signal prev_ctrl_l : std_logic := '0'; -- delay reg
 signal edge : std_logic; -- detect falling edge
 signal sum_r : integer; -- accumulate

begin
 mike : process (clk, rst_n)
 begin
 if rst_n = '0' then
 sum_r <= 0;
 d_out <= '0';
 elsif clk'event and clk = '1' then
 d_out <= '0';
 prev_ctrl_l <= ctrl_l;
 d_out <= prev_ctrl_l;
 if edge = '1' then
 sum_r <= to_integer(unsigned (val_in)) + sum_r;
 end if;
 end if;
 end process mike;

 sum_out <= std_logic_vector (to_unsigned (sum_r, data_width_g));

 patton : process (val_in, ctrl_in, prev_ctrl_l, rst_n)
 begin
 if (prev_ctrl_l = '0' and ctrl_in='1') then edge <= '1';
 else edge <= '0';
 end if;

 if std_logic_vector (to_unsigned (sum_r, data_width_g)) = val_in then
 eq_out <= '1';
 else
 eq_out <= '0';
 end if;
 end process patton;
end gatelevel;
3. Analyze the VHDL code on the previous page. Show the resulting logic diagram after RTL synthesis. Use dashed line to show separate synthesized logic of each process. Show every port, signal and variable. Don't make too small or ugly diagram, but clear and elegant. (6p)

3. Explain (5p)
 a) What is clock skew and how does it affect the FPGA's internal structure? (1p)
 b) What happens when reading a signal that is currently at value 'Z'? (1p)
 c) Why should entity's output be registered? (1p)
 d) Is it a good or bad idea that the same person writes both the DUV and TB? Why/why not? (1p)
 e) What are 3 main delivery types of an IP component? (1p)

5. Analyze the circuit below. (4p)
 a) Which signals have to be synchronized? Or is it necessary to synchronize any of them? (2p)
 b) Is there enough signals for proper working? (2p)