MATH.MA.210 Discrete mathematics Exam, 08.05.2024

Answer five questions out of the following six. All questions have the same value. Questions

(1) We define the following propositions:

p means "It is lunchtime", q means "It is a working day", and r means "It is sunny". Also we define the following predicates:

A(x) means person x is hungry. B(x) means the person x eats at the university restaurant. C(x) means x goes out.

The universal set is some set of people, that includes at least the person "Jack".

- (a) Write the following sentence as a formula: "If it is sunny, then Jack will go out, and if he is out and hungry, he will eat at the university restaurant"
- (b) Write the following sentence as a formula: "If it is not sunny, no one will go out on a weekday"
- (c) Write the following sentence as a formula: "No one eats at the university restaurant if it is not lunchtime and a working day".
- 2. Prove the following is true for $n \in \mathbb{Z}_+$ using induction:

$$\left(\sum_{i=1}^{n} (2i-1)\right) = n^2$$

- 3. The city has 12 electric busses. The city has 40 blue buses and 20 red buses. The city employs 25 foreign drivers. 6 electric buses are blue. 8 electric buses are driven by foreign drivers. How many buses are there that have one or more of the characteristics: electric, blue, or driven by foreigners? Use the inclusion exclusion principle.
- (4. Let A and B be sets such that |A| = m and |B| = n, and assume that $m \le n$.
 - (a) How many different functions $f: A \to B$ exist?
 - (b) How many of these functions are injections?
 - (c) If m = n, prove that an injection must be a bijection.
- 5. Let the operation \star be defined for *odd integers* \mathbb{Z}^{odd} such that

$$x \star y = x + y - 1$$

Prove that \mathbb{Z}^{odd} with the operation \star forms a group, and explain what is the identity element of the group, and how to calculate the inverse for each element.

- (6.) (a) What is the remainder when 4^{119} is divided by 5?
 - (b) Which of the following equations have unique solutions, and why/why not? List all solutions (i.e., all equivalence classes, obviously, as there are infinite many solutions when a solution exists)
 - i. $4x \equiv 7 \mod 12$
 - ii. $4x \equiv 7 \mod 11$
 - iii. $2x \equiv 6 \mod 12$

APPENDIX: Some helpful formulas and definitions

Definition 1. If a relation is reflexive, symmetric, and transitive, we call it an equivalence relation or simply an equivalence.

Definition 2. A group is a pair (G, \bullet) where G is a set \bullet is an operation on G with the following properties

- 1. Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for a, b, and $c \in G$.
- 2. Identity element: There exists an element $e \in G$ such that $e \bullet a = a \bullet e = a$ for every $a \in G$.
- 3. Inverse: for every $a \in G$ there is an element $a^{-1} \in G$ such that $a \bullet a^{-1} = a^{-1} \bullet a = e$.

Definition 3. Let $n \in \mathbb{Z}_+$. If for two numbers $a, b \in \mathbb{Z}$ we have $n \mid (a - b)$, we say that a is congruent with b modulo n and we denote $a \equiv b \pmod{n}$ or $a \equiv_n b$.